
Practical 1 (Basics of R)

S

MPSTME 1

 Introduction to R and RStudio

 R Studio interface and basics

 Basic arithmetic and variable assignment

 Comparison and logical operators

 Data types

 Vectors

 Functions

 Loops and conditionals

 Probability and statistics

 Data frames

 Data visualisation

Introduction to R and R Studio

R is a popular programming language for statistical computing and

graphics. It is widely used among statisticians and data miners for

developing statistical software and data analysis.

R Studio, on the other hand, is an Integrated Environment

Environment (IDE) for R that is available in two formats: RStudio

Desktop, which is a regular desktop application, and RStudio Server,

Practical 1 (Basics of R)

S

MPSTME 2

which runs on a remote server and allows access to RStudio via a web

browser.

R Studio Deskstop which you can find here and install on your local

computer.

So, why should you learn R?

 R is open-source, which means that it is constantly being updated

and improved by other collaborative developers around the world

 It has many external packages that are suited for different purposes

e.g. data manipulation, text cleaning, data visualisation, and more

 It is relatively easy and straightforward to pick up once you

are familiar with the basic syntax

 Almost everyone who works with data understands and knows how

to use R, so you should know it too!

Installing R.

• Home page of The R project for Statistical Computing
• r-project.org
• Rstudio is lot easier and lot more organised.
• Install using the website of Rstudio rstudio.com.

https://www.rstudio.com/products/rstudio/download/

Practical 1 (Basics of R)

S

MPSTME 3

R Studio interface and basics

R Studio interface

RStudio is split into 4 quadrants:

 Script (top left): where commands are written, executed, and

saved

 Environment (top right): lists the data, variables, and functions

that are currently in the workspace

 Console (bottom left): for quickly testing code and where

commands and outputs are displayed, except plots

 Plot (bottom right): where graphics are displayed

Practical 1 (Basics of R)

S

MPSTME 4

As for basic commands that you need to know when using R Studio:

 Clear console: Ctrl + L

 Quit RStudio: Ctrl + Q or quit()

 Run code from the script: Ctrl + Enter

 Remove saved variable: remove()

 Clear everything in the workspace: remove(list = ls())

 Access previous command: Arrow up

 R awaits the next command: >

 R is expecting more inputs: +

 Comment / uncomment code in script: Ctrl + Shift + C

 Getting help: help() or ?

Basic arithmetic and variable assignment

Variables are nothing but reserved memory locations to store values.

This means when you create a variable you reserve some space in

memory.

One of the most basic use cases of R is basic arithmetic. Moreover, you

Practical 1 (Basics of R)

S

MPSTME 5

can also assign values to variables in order to make your calculations

more flexible and robust.

Assignment operators

x=5

y<-5

20-> z

Relational operators a==b, a!=b(not equal to),a>b,a<b,a>=b,a<=b

Logical operators -and(a&b),or(a|b) , not (!a)

 Add: +

 Subtract: -

 Multiply: *

 Divide: /

 Power: ̂ or **

 Integer divide: %/%

 Modulo (remainder after division): %%

 Variable assignment: = or <-

Practical 1 (Basics of R)

S

MPSTME 6

Comparison and logical operators

Comparison operators compare a pair of values and return either a true

or a false.

 Equal to: == (note the difference between ==, which is used

for comparison and =, which is used for assignment)

 Not equal to: !=

 Greater than: >

 Less than: <

 Greater than or equal to: >=

 Less than or equal to: <=

Logical operators, on the other hand, are used to combine multiple true

and false statements.

 And: &

 Or: |

Practical 1 (Basics of R)

S

MPSTME 7

Data types

A data type in programming is a classification that specifies which type of

value a variable has what type of mathematical, relational or logical

operations can be applied to it without causing an error.

Data type helps to classify the value stored in a variable.

For eg: numeric value , we can apply various arithmetic operations but you

cannot apply this operation to character value.

There are 5 main data types in R:

 Numeric: (real or decimal), numbers e.g. 0, 3.5

 Character: can contain letters, numbers, and special characters

e.g. “hello, world”

 Logical: boolean values i.e. true or false

 Complex: 1+4i (complex numbers with real and imaginary parts)

 Integer: 2L (the L tells R to store this as an integer)

R provides many functions to examine features of vectors and other objects, for

example

 class() - what kind of object is it (high-level)?

 typeof() - what is the object’s data type (low-level)?

 length() - how long is it? What about two dimensional objects?

 attributes() - does it have any metadata?

R has many data structures. These include

 atomic vector

 list

 matrix

 data frame

 factors

Practical 1 (Basics of R)

S

MPSTME 8

Vectors

Vector is the most fundamental data structure that is used to store data in

R. Vector is a one-dimensional, ordered collection of data of the same

data type.

To manually create a vector in R, we use c(). Alternatively, there are

also built-in functions in R specifically for the purpose of creating

numeric vectors such rep() and seq().

We can also access, add, remove, and alter the elements in any given

vector.

x1 = c(TRUE, FALSE)

x2 = c(1,2,3)

class(x2)

x3 = c(1L,2L,3L)

class(x3)

x4 = c(12 ,23 ,45,2,2222222222)

x5 = c("HELLO","HI")

x6 = c(TRUE, FALSE,12L)

x7 = c("hello", 12L,1.22, TRUE) #converts to character type vector if it has

character

x8 =c(1:12)

class(x7)

Practical 1 (Basics of R)

S

MPSTME 9

Matrix

• Matrix are R objects in which the elements are arranged in a two

dimensional rectangular layout

• Syntax: matrix(data,nrow,ncol,byrow,dimnames)

• Data – is the input vector which becomes the data elements of the matrix.

• Nrow- is the number of rows to be created.

• Ncol- is the number of columns to be created.

• Byrow- is a logical value, if TRUE then the input vector elements is

aarranged by rows.

• Dimnames- is the names assigned to the rows and columns

m = matrix(c(1:25),4)

m1 = matrix(c(1:25),c(5,5))

print(m1)

m2 = matrix(c(1:20,byrow=TRUE))

print(m2)

m3 <- matrix(1:20, nrow = 4)

dimnames(m3) <- list(month.abb[1:4], month.abb[5:9])

print(m3)

3 array syntax- array(data,dim,dimnames)

a = array(c(1:9),dim = c(2,2,4,2))

print(a)

x1 = c("Hello")

class(x1)

Practical 1 (Basics of R)

S

MPSTME 10

Array

Arrays are R data objects which can store data in more than two dimensions.

Syntax: array(data,dim,dimnames)

List

Lists are the R objects which contain elements of different types like

numbers,strings,vectors and another list inside it without actually changing

there data type unlike vectors.

Syntax: list(data)

x1 = c("HI","HELLO")

x2 = c(12,13,14)

mylist = list(x1,x2)

l = list(1,2,1.23,1L,"HELLO")

mylist[2]

l[3]

Practical 1 (Basics of R)

S

MPSTME 11

Loops and conditionals

Loops repeatedly run a piece of code for a given number of times or

until a condition has been met. To define a condition in loops, we need

if-else statements.

There are two types of loops in R which is consistent across many other

programming languages:

 For loop: run a piece of code many times

 While loop: keep running a piece of code until some condition

fails

#if statement

v1 =2

v2 =1

if ((v1+v2)>20){

 print("numbr is greater than 20")

}

#else if statement

v1 =8

v2 =12

if ((v1+v2)>20){

 print("numbr is greater than 20")

}else if((v1+v2)<20){

 print("number is less than 20")

}else

 print("number is 20")

Practical 1 (Basics of R)

S

MPSTME 12

#switch

switch(2,

 '1'= print("MONDAY"),

 '2'= print("TUESDAY"),

 '3'= print("WEDNESDAY"),

 '4'=print("THURSDAY"),

 print("none of these")

)

v1= 1

repeat{

 print(v1)

 v1=v1+2

 if(v1>20){

 break

 }

}

v1=1

while(v1<20){

 print(v1)

 v1=v1+2

}

for(x in 1:20){

 if (x%%2!=0){

 print(x)

}

}

Practical 1 (Basics of R)

S

MPSTME 13

Functions

Programming, much like any problem-solving scenario in general, is

about breaking down a big problem into smaller constituent

components. This helps to not only better structure and organise our

work but more importantly, it allows for easier code review and

debugging when needed.

Functions are a piece of code that performs a certain task that can be

readily reused again. A function involves a simple 3-step process:

input, process and output.

Inputs are sometimes called parameters or arguments which is what

we pass into the function itself. Process is what the function will

perform on the inputs that it is being given, which can be any form of

data transformation or numerical computation. Last but not least, the

function will then return the desired output.

In addition to using the built-in functions in R, we can also construct

our own function using function().

fibo <- function(a){

 v1 =0

 v2 = 1

 print(v1)

 print(v2)

 for(x in 1:a){

 v3 = v1+v2

 print(v3)

 v1 = v2

 v2 = v3

 }

}

Practical 1 (Basics of R)

S

MPSTME 14

fibo(5)

fibo(10)

fibo(13)

Some built-in functions in R include:

 abs()

 sqrt()

 round()

 log()

 exp()

 sin()

Practical 1 (Basics of R)

S

MPSTME 15

Probability and statistics

R was mainly built for statistical analysis and handling large volumes

of data.

It has several built-in functions that enable summary statistics,

probability distributions as well as hypothesis testing to be carried out

easily:

 Summary statistics are used to summarise a set of observations

e.g. summary()

 Probability distributions assign probabilities to different outcomes

e.g. dbinom(), pnorm(), qchisq(), and rexp().

• Hypothesis testing offers a way to test the result of an experiment

e.g. t.test(), prop.test(), and chisq.test()

Data frames

Similar to a vector, data frame is data structure that is used for storing

data in R. It is a list of vectors which are of equal lengths but can be of

different data types.

The vectors are presented as columns, each with a name and represent

variables. The rows represent observations and can be named or

unnamed.

While they can be constructed from scratch, data frames are typically

produced from importing data sets e.g. csv or Excel format files.

Practical 1 (Basics of R)

S

MPSTME 16

y1 = c(1:5)

y2 =c("NEHA", "DWIJESH","SNEHA","AB","AK")

y3 = c(12,32,43,54,12)

data.frame(y1,y2,y3)

data.frame(airquality)

PACKAGES IN R.
• dplyr- for manipulating data frames
• tidyr-for cleaning up information
• Stringr-for working with strings or text information
• Lubridate-for manipulating date information
• Httr- for working with website data
• Ggvis-(stands for grammar of graphics) this is for interactive

visualizations
• Ggplot2-for creating graphics or data visualizations in R
• Shiny- for interactive applications which u can install on website
• Rio-(stands for R input and output) its for importing and exporting data
• Rmarkdown-allows to create interactive notebooks or documents for

sharing information
One package to load them all

• Packman (stands for package manager)
• Command for installation of packages – install.packages(“nameof the

package”)
• Eg.:run install.packages(“pacman”)
• This will make it available in the hardware but loading means actually

making it accessible for use.
• Command for loading is library(“nameof the package”)
• Eg.: library(“pacman”)

Once pacman is installed, other packages can be installed using pacman.

• Or use “pacman::p_load”
• P_load function from pacman without actually loading pacman.
• Command: pacman::p_load (pacman, dplyr,Ggally, ggplot2, ggthemes,

ggvis, httr,lubridate, plotly, rio, rmarkdown, shiny, stringr, tidyr)
• So once you have pacman, this command will help you to install ,make it

available and load all these packages.
Base packages

Practical 1 (Basics of R)

S

MPSTME 17

• Packages which come it with r natively like the datasets packages
• You still have to load and unload packages manually.
• Use the command- library(datasets)

Clear packages
• With pacman, specific packages can be unloaded separately
• Command- p_unload(dplyr, tidyr)
• Or unload all using the command- p_unload(all) , this command unloads

all the third party packages.
• For base packages use command-

detach(“package:datasets”,unload=TRUE)
• To clear console, command- cat(“\014”)

Questions:

1. Create a vector with some of your friend’s names

i. Get the length of above vector

ii. Get the first two friends from above vector

iii. Get the 2nd and 3rd friends

iv. Sort your friends by names using 2 methods

2. Compute the difference between 2014 and the year you started at this

university and divide this by the difference between 2014 and the year you

were born. Multiply this with 100 to get the percentage of your life you have

spent at this university.

3. Compute the sum of 4, 5, 8 and 11 by first combining them into a vector and

then using the function sum.

4. Create three vectors x,y,z with integers and each vector has 3

elements.Combine the three vectors to become a 3×3 matrix A where each

column represents a vector. Change the row names to a,b,c.

5. What is a vector? How to create it? Create a vector A of elements 5, 2, -2,

6,7,10,12,14,15 and from it create a vector Y containing elements of A>6

6. Create a vector containing following mixed elements {1, ‘a’, 2, ‘b’} and find

out its class.

7. Write a R program to create three vectors numeric data, character data and

logical data. Display the content of the vectors and their type.

Practical 1 (Basics of R)

S

MPSTME 18

8. Write a R program to create a 4 x 5 matrix, 3 x 2 matrix with labels and fill

the matrix by rows and 2 × 2 matrix with labels and fill the matrix by

columns.

9. Write a R program to compute sum, mean and product of a given vector

elements.

10. List all the observations of “airmiles” dataset.

11. Write a R program to compute addition, subtraction and multiplication of two

matrices of dimension 4x4.

12. Write a R program to create a list containing a vector, a matrix and a list; and

13. Give names to the elements in the list. Access the second element of the list.

